Arginase inhibition protects against allergen-induced airway obstruction, hyperresponsiveness, and inflammation.
نویسندگان
چکیده
RATIONALE In a guinea pig model of allergic asthma, using perfused tracheal preparations ex vivo, we demonstrated that L-arginine limitation due to increased arginase activity underlies a deficiency of bronchodilating nitric oxide (NO) and airway hyperresponsiveness (AHR) after the allergen-induced early and late asthmatic reaction. OBJECTIVES Using the same animal model, we investigated the acute effects of the specific arginase inhibitor 2(S)-amino-6-boronohexanoic acid (ABH) and of L-arginine on AHR after the early and late reaction in vivo. In addition, we investigated the protection of allergen-induced asthmatic reactions, AHR, and airway inflammation by pretreatment with the drug. METHODS Airway responsiveness to inhaled histamine was measured in permanently instrumented, freely moving guinea pigs sensitized to ovalbumin at 24 hours before allergen challenge and after the allergen-induced early and late asthmatic reactions by assessing histamine PC(100) (provocative concentration causing a 100% increase of pleural pressure) values. MEASUREMENTS AND MAIN RESULTS Inhaled ABH acutely reversed AHR to histamine after the early reaction from 4.77 +/- 0.56-fold to 2.04 +/- 0.34-fold (P < 0.001), and a tendency to inhibition was observed after the late reaction (from 1.95 +/- 0.56-fold to 1.56 +/- 0.47-fold, P < 0.10). Quantitatively similar results were obtained with inhaled l-arginine. Remarkably, after pretreatment with ABH a 33-fold higher dose of allergen was needed to induce airway obstruction (P < 0.01). Consequently, ABH inhalation 0.5 hour before and 8 hours after allergen challenge protected against the allergen-induced early and late asthmatic reactions, AHR and inflammatory cell infiltration. CONCLUSIONS Inhalation of ABH or l-arginine acutely reverses allergen-induced AHR after the early and late asthmatic reaction, presumably by attenuating arginase-induced substrate deficiency to NO synthase in the airways. Moreover, ABH considerably reduces the airway sensitivity to inhaled allergen and protects against allergen-induced bronchial obstructive reactions, AHR, and airway inflammation. This is the first in vivo study indicating that arginase inhibitors may have therapeutic potential in allergic asthma.
منابع مشابه
Arginase: a key enzyme in the pathophysiology of allergic asthma opening novel therapeutic perspectives.
Allergic asthma is a chronic inflammatory airways' disease, characterized by allergen-induced early and late bronchial obstructive reactions, airway hyperresponsiveness (AHR), airway inflammation and airway remodelling. Recent ex vivo and in vivo studies in animal models and asthmatic patients have indicated that arginase may play a central role in all these features. Thus, increased arginase a...
متن کاملIncreased arginase activity contributes to airway remodelling in chronic allergic asthma.
Airway remodelling, characterised by increased airway smooth muscle (ASM) mass, subepithelial fibrosis, goblet cell hyperplasia and mucus gland hypertrophy, is a feature of chronic asthma. Increased arginase activity could contribute to these features via increased formation of polyamines and l-proline downstream of the arginase product l-ornithine, and via reduced nitric oxide synthesis. Using...
متن کاملThe inhaled Rho kinase inhibitor Y-27632 protects against allergen-induced acute bronchoconstriction, airway hyperresponsiveness, and inflammation.
Recently, we have shown that allergen-induced airway hyperresponsiveness (AHR) after the early (EAR) and late (LAR) asthmatic reaction in guinea pigs could be reversed acutely by inhalation of the Rho kinase inhibitor Y-27632. The present study addresses the effects of pretreatment with inhaled Y-27632 on the severity of the allergen-induced EAR and LAR, the development of AHR after these react...
متن کاملHelminth-modified pulmonary immune response protects mice from allergen-induced airway hyperresponsiveness.
It has been shown that the presence of certain helminth infections in humans, including schistosomes, may reduce the propensity to develop allergies in infected populations. Using a mouse model of schistosome worm vs worm + egg infection, our objective was to dissect the mechanisms underlying the inverse relationship between helminth infections and allergies. We have demonstrated that conventio...
متن کاملAllergen-induced airway hyperresponsiveness mediated by cyclooxygenase inhibition is not dependent on 5-lipoxygenase or IL-5, but is IL-13 dependent.
Cyclooxygenase (COX) inhibition during allergic sensitization and allergen airway challenge results in augmented allergic inflammation. We hypothesized that this increase in allergic inflammation was dependent on increased generation of leukotrienes that results from COX inhibition, as leukotrienes are important proinflammatory mediators of allergic disease. To test this hypothesis, we allergic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of respiratory and critical care medicine
دوره 178 6 شماره
صفحات -
تاریخ انتشار 2008